Synthesis of $18 R$-hydroxy-epiallo-yohimbines from (-)-3-iso-19,20-dehydro- β-yohimbine: an enantiospecific route to deserpidine and reserpine analogues from secologanin

Falmai Binns, Richard T. Brown* and Bukar E. N. Dauda
Department of Chemistry, The University of Manchester, Manchester M13 9PL, UK

Received 19 May 2000; accepted 1 June 2000

Abstract

(-)-3-Iso-19,20-dehydro- β-yohimbine has been converted into epiallo-yohimbines and, via a novel regioand stereoselective hydration, into the $18 R$-hydroxy derivative, an analogue of deserpidine. Its 11 -methoxy derivative, also prepared from secologanin, is a potential precursor for a reserpine analogue. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: addition reaction; alkaloids; indole; regioselection; stereoselection; terpene.

Because of their therapeutic uses, deserpidine $\mathbf{1}$ and reserpine $\mathbf{2}$ are the most familiar members of the small group of 18-hydroxy-epiallo-yohimbine alkaloids, and have been targets for a variety of synthetic approaches. ${ }^{1}$ Common to all of these was the necessity for epiallo stereochemistry, i.e. $3 \beta, 15 \alpha, 20 \alpha$, around ring D , which was generally achieved by using intermediates with the eventual $\mathrm{H}-15$ and $\mathrm{H}-20$ cis and then exercising stereocontrol in generation of the trans $\mathrm{H}-3$ relative configuration. This was not a trivial task, essentially because there is usually not much difference in energy between the available conformations of the C-3 epiallo and allo epimers. However, our synthesis ${ }^{2}$ of (-)-3-iso-19,20-dehydro- β-yohimbine $\mathbf{3}$ from secologanin offered the opportunity for an alternative approach, in that $\mathrm{H}-3$ and $\mathrm{H}-15$ now had the desired trans geometry and it remained to introduce $\mathrm{H}-20$ selectively cis to $\mathrm{H}-15$. In this case the choice was between pseudo ($3 \beta, 15 \alpha, 20 \beta$) and epiallo stereochemistry, whence conformational analysis led us to consider that the latter should be thermodynamically preferred. Furthermore, the presence of a 19,20 double bond meant that it should be possible to introduce an oxygenated functionality at the allylic $\mathrm{C}-18$ position.

[^0]

We envisaged that the required $\mathrm{H}-20$ stereochemistry might be achieved by oxidation of the $\mathrm{C}-17$ alcohol in $\mathbf{3}$ and subsequent isomerisation of the 19,20 alkene into conjugation with the 17-ketone (Scheme 1). Initial attempts to obtain the ketone were thwarted by the ease of aromatisation to a phenol, but Swern oxidation with $\mathrm{DMSO} /(\mathrm{COCl})_{2}$ afforded in 87% yield an amorphous product $\left[M^{+} 350.1628\left(\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}\right) ; \lambda_{\max }(\mathrm{MeOH}): 225,273,291 \mathrm{~nm} ; v_{\max }\left(\mathrm{CHCl}_{3}\right): 3500-3200,1732\right.$, $\left.1657,1619 \mathrm{~cm}^{-1}\right]$. A large base shift of the UV spectrum indicated the anticipated β-keto-ester, shown to be virtually completely enolised by lack of an $\mathrm{H}-16$ signal and the presence of an exchangeable one-proton signal at $\delta 12.47$ in the ${ }^{1} \mathrm{H}$ NMR spectrum, ${ }^{5}$ which also confirmed the structure as 4.

Scheme 1. Reagents and conditions: (i) $\mathrm{DMSO} /(\mathrm{COCl})_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2},-50^{\circ} \mathrm{C}, 0.5 \mathrm{~h}$; (ii) $\mathrm{DBU} / \mathrm{MeCN}, 24 \mathrm{~h}$; (iii) $\mathrm{NaBH}_{4} /$ $\mathrm{CeCl}_{3} / \mathrm{MeCN} / \mathrm{MeOH}, 1 \mathrm{~h}$; (iv) $\mathrm{Hg}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2} / \mathrm{MeCN} /$ aq. TFA, 24 h ; (v) $\mathrm{NaBH}_{4} /$ aq. $\mathrm{NaOH}, 5 \mathrm{~min}$

As the next step of alkene isomerisation entailed the deprotonation of $\mathrm{C}-18$ in the presence of this much more acidic enol, several acids and bases were tried as catalysts, with disappointing results. In particular, compound $\mathbf{4}$ was susceptible to β-dicarbonyl cleavage, reacting to give conjugated ketones but only with concomitant decarbomethoxylation. Eventually, it was found that DBU in acetonitrile at room temperature for 24 hours achieved the double bond migration with retention of the ester, giving an 80% yield of two separable isomers in a ca. 8:1 ratio. The structure of the major product $[\alpha]_{\mathrm{D}}+19(\mathrm{EtOH})\left[M^{+} 350.1632\left(\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}\right) ; v_{\max }: 1737,1677\right.$ cm^{-1}] was shown to be the desired 18,19-dehydro-epialloyohimbone $\mathbf{6}$ from inter alia a detailed analysis of its ${ }^{1} \mathrm{H}$ NMR spectrum. ${ }^{5}$ There were two alkene protons at $\delta 5.86$ and 6.10 assigned to $\mathrm{H}-18$ and $\mathrm{H}-19$ respectively; $\mathrm{H}-3$ was a broadened doublet at $\delta 3.27$ with a trans-aa coupling of 12

Hz to $\mathrm{H}-14_{a x} ; \mathrm{H}-16$ was a doublet at $\delta 3.60$ with a trans-aa coupling of 12 Hz to $\mathrm{H}-15$ at $\delta 2.77$, which in turn had only a small ae coupling of 2 Hz with $\mathrm{H}-20$, in accord with their cis geometry, and small ae and ee couplings with both $\mathrm{C}-14$ protons. These data established an epiallo configuration and also a trans-quinolizidine conformation, the latter feature corroborated by characteristic IR bands at ca. $2735 \mathrm{~cm}^{-1}$.

As anticipated, the minor product $[\alpha]_{\mathrm{D}}-34(\mathrm{EtOH})\left[M^{+} 350.1630\left(\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}\right) ; v_{\text {max }}: 1732\right.$, $1675 \mathrm{~cm}^{-1}$] was found to be the alternative 20 -epimer, 18,19 -dehydro-pseudoyohimbone 5 . In its NMR spectrum ${ }^{5} \mathrm{H}-15$ was observed at $\delta 1.65$ with trans-aa couplings of 11,11 and 12 Hz to $\mathrm{H}-14_{a x}$, $\mathrm{H}-16$ and $\mathrm{H}-20$, respectively, whereas $\mathrm{H}-3$ was a broad singlet at $\delta 4.18$ with only small ae and ee couplings with the $\mathrm{C}-14$ protons, in accord with an equatorial orientation. Hence, a pseudo configuration was confirmed with a corresponding cis-quinolizidine conformation, as also indicated by the absence of any trans IR bands. We rationalised that the cis-quinolizidine $\mathbf{5}$ was an initial kinetic product from the deprotonation/reprotonation process but that it was gradually isomerised into the more stable trans-quinolizidine 6. Accordingly, when pure samples of $\mathbf{5}$ and $\mathbf{6}$ were treated with DBU in acetonitrile, $\mathbf{5}$ was indeed slowly converted into $\mathbf{6}$, but there was no sign of the reverse even after several weeks.

To obtain a C-18 hydroxyl with $\beta(R)$ configuration a regioselective and stereoselective addition of water to the 18,19 alkene was required. Our initial strategy envisaged use of a $\beta \mathrm{C}-17$ hydroxyl to direct oxygen addition to the $r e$ face of $\mathrm{C}-18$ via a cyclic acetal, and hence generate a cis-diol by analogy with a literature procedure using Hg^{2+} and chloral. ${ }^{3}$ Thus, borohydride reduction of 6 in methanol/acetonitrile in the presence of CeCl_{3} afforded a 78% yield of a separable epimeric pair (4:1 ratio) of allylic alcohols. The major product $[\alpha]_{\mathrm{D}}+19(\mathrm{EtOH})\left[M^{+} 352.1793\left(\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}\right)\right]$ was shown to be 18,19 -dehydro-epiallo- β-yohimbine 7 from its NMR spectrum ${ }^{5}$ with a large trans-diaxial coupling of 11 Hz between $\mathrm{H}-17$ and $\mathrm{H}-16$, which in turn also had another trans-aa coupling with $\mathrm{H}-15$. On the other hand, the minor alcohol $[\alpha]_{\mathrm{D}}+12(\mathrm{EtOH})\left[M^{+} 352.1780\right.$ $\left(\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}\right)$] was 18,19 -dehydro-epialloyohimbine 8 , as indicated by a cis-ae coupling of 4 Hz between $\mathrm{H}-16$ and $\mathrm{H}-17$. In both cases the structures were confirmed by catalytic hydrogenation with $\mathrm{Pd}-\mathrm{C}$ of the 18,19 -alkene to the known alkaloids.

However, all attempts to form a cyclic acetal from 7 failed, and a variant involving cyclisation of a urethane apparently resulted in bonding of the nitrogen rather than the oxygen to C-18. Nevertheless, since the latter indicated that mercuration was at least occurring, we devised a new strategy. Considering the concave shape of the D / E rings imposed by the cis ring junction, the mercury ion should attack the alkene from the less hindered convex face to give an intermediate cation, which would prefer to have a half-chair conformation \mathbf{A} with three substituents pseudoequatorial rather than axial as in the alternative (Scheme 2). Crucially, if the reactions were under stereoelectronic control, obligatory trans-diaxial addition would mean that the nucleophile (e.g. ROH) must approach from the upper re face on a trajectory towards $\mathrm{C}-18$, rather than $\mathrm{C}-19$, to

Scheme 2.
ensure a chair-like transition state \mathbf{B}, rather than an unfavourable boat-like transition state. The net result should be formation of the organomercurial \mathbf{C}, and hence $18 R$ alcohol 9 .

After some experimentation, treatment of 7 with mercuric trifluoroacetate in presence of water and TFA (to minimise oxidation of $\mathrm{N}-4$), followed by reduction of the organomercury intermediate with sodium borohydride, afforded a single product, mp $158-160^{\circ} \mathrm{C}\left[M^{+} 370.1875\right.$ $\left(\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}\right) ; \lambda_{\text {max }}: 229,286,290 \mathrm{~nm}$; $\left.v_{\text {max }}: 3600-3260,1714 \mathrm{~cm}^{-1}\right]$ in 50% yield. That it was a diol was shown by the formation of a diacetate $\left[M^{+} 454.2099\left(\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6}\right) ; v_{\max }: 3250,1725\right.$ cm^{-1}], analysis of whose NMR spectrum ${ }^{5}$ established that the addition of water to 7 had indeed proceeded with the desired regio- and stereochemistry to give 9 . In particular, a double doublet at $\delta 5.32$ was identified as $\mathrm{H}-17$ with a large trans-aa coupling to $\mathrm{H}-16$ and a small cis-ae coupling to $\mathrm{H}-18$, attributed from its chemical shift at $\delta 5.63$; in turn, H-18 had only small ae and ee couplings to the C-19 methylene group, confirming its equatorial disposition. Interestingly, an identical addition also occurred with the minor epimer $\mathbf{8}$, showing that H -bonding of the nucleophile ROH with the 17-alcohol was not an essential requirement for the reaction.

Thus, from $\mathbf{3}$ we have produced $18 R$-hydroxy-epiallo- β-yohimbine $\mathbf{9}$, an analogue of deserpidine $\mathbf{1}$ with the correct absolute stereochemistry at C-3, 15, 18 and 20. Indeed, elimination of water from C-16/17 would give a compound which has been converted into 1 by Szantay and co-workers. ${ }^{4}$ The 11-methoxy derivative of $\mathbf{3}$ has also been made for conversion into a similar analogue of reserpine 2. Furthermore, inversion of C-3 by standard methods ${ }^{1 \mathrm{~b}}$ would give access to the corresponding allo series of yohimbines from the epiallo compounds.

Acknowledgements

We thank the EPSRC for a Postdoctoral Research Assistantship (F.B.) and the Commonwealth Commission for a Scholarship (B.E.N.D.).

References

1. For recent reviews, see: (a) Hanessian, S.; Pan, J.; Carnell, A.; Bouchard, H.; Lesage, L. J. Org. Chem. 1997, 62, 465-473. (b) Szantay, C.; Honty, K. In Monoterpenoid Indole Alkaloids; Saxton, J. E., Ed.; John Wiley: Chichester, 1994; chapter 4, and references cited therein.
2. Brown, R. T.; Pratt, S. B.; Richards, P. Tetrahedron Lett. 2000, 41, 5627-5630.
3. Overman, L. E.; Campbell, C. B. J. Org. Chem. 1974, 39, 1474-1478.
4. Szantay, C.; Blasko, G.; Honty, K.; Baitz-Gacs, E.; Toke, L. Ann. Chem. 1983, 1292-1309.
5. ${ }^{1} \mathrm{H}$ NMR spectra (300 MHz). Compound 4: $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 12.47(\mathrm{~s}, \mathrm{OH}), 7.76(\mathrm{bs}, \mathrm{NH}), 7.25-7.70\left(\mathrm{~m}\right.$, ar- $\left.\mathrm{H}_{4}\right), 5.48$ (bs, $\mathrm{H}-19), 4.42$ (dd, $J=6,3 \mathrm{~Hz}, \mathrm{H}-3$), 3.90 (s, OMe), 3.82 (bd, $J=16.5 \mathrm{~Hz}, \mathrm{H}-21_{e q}$), $3.80\left(\mathrm{dm}, J=13 \mathrm{~Hz}, \mathrm{H}-5_{e q}\right.$), 3.59 (ddd, $\left.J=13,12,2 \mathrm{~Hz}, \mathrm{H}-5_{a x}\right), 3.1-2.9\left(\mathrm{~m}, \mathrm{H}-6_{e q}, \mathrm{H}_{2}-18, \mathrm{H}-21_{a x}\right), 2.82(\mathrm{bd}, J=12 \mathrm{~Hz}, \mathrm{H}-15), 2.48$ (dd, $J=12,3 \mathrm{~Hz}$, $\mathrm{H}-14_{e q}$), 2.20 (ddd, $\left.J=15,12,5 \mathrm{~Hz}, \mathrm{H}-6_{a x}\right), 1.62\left(\mathrm{td}, J=12,6 \mathrm{~Hz}, \mathrm{H}-14_{a x}\right)$. Compound 5: ($\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.95$ (bs, NH), 7.68-7.12 (m, ar-H4), $6.10(\mathrm{dd}, J=10,5 \mathrm{~Hz}, \mathrm{H}-19), 5.86(\mathrm{~d}, J=10 \mathrm{~Hz}, \mathrm{H}-18), 3.65$ (s, OMe), 3.27 (bd, $J=12 \mathrm{~Hz}$, $\mathrm{H}-3), 3.02\left(\mathrm{dd}, J=12,3 \mathrm{~Hz}, \mathrm{H}-6_{a x}\right), 2.77$ (ddm, $\left.J=12,2 \mathrm{~Hz}, \mathrm{H}-15\right), 2.65\left(\mathrm{~m}, \mathrm{H}-5_{e q}, \mathrm{H}-6_{e q}\right), 2.4-2.3$ (m, H-20, H-5 ${ }_{a x}$, $\mathrm{H}-21_{a x}$), $1.65\left(\mathrm{dm}, J=12 \mathrm{~Hz}, \mathrm{H}-14_{e q}\right), 1.57\left(\mathrm{~m}, \mathrm{H}-14_{e q}, \mathrm{H}-21_{e q}\right)$. Compound 6: $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.48(\mathrm{bs}, \mathrm{NH}), 7.63-7.19$ ($\mathrm{m}, \operatorname{ar}-\mathrm{H}_{4}$), $5.76(\mathrm{~d}, J=10 \mathrm{~Hz}, \mathrm{H}-18), 5.70(\mathrm{dd}, J=10,5 \mathrm{~Hz}, \mathrm{H}-19), 4.18$ (bs, H-3), $3.60(\mathrm{~s}, \mathrm{OMe}), 3.05\left(\mathrm{~m}, \mathrm{H}_{2}-5\right)$, 2.95 (d, $J=11 \mathrm{~Hz}, \mathrm{H}-16), 2.84\left(\mathrm{dbd}, J=15,10 \mathrm{~Hz}, \mathrm{H}-6_{a x}\right), 2.38\left(\mathrm{dbd}, J=15,4 \mathrm{~Hz}, \mathrm{H}-6_{e q}\right), 2.29(\mathrm{dd}, J=11,4 \mathrm{~Hz}$, $\mathrm{H}-21_{e q}$), 2.18 (dd, $J=11,10 \mathrm{~Hz}, \mathrm{H}-21_{a x}$), 1.65 ($\mathrm{m}, \mathrm{H}-14_{e q}, \mathrm{H}-15$), 1.52 (dbd, $J=14,11 \mathrm{~Hz}, \mathrm{H}-14_{a x}$). Compound 7: $\left(\mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{bs}, \mathrm{NH}), 7.47-7.15\left(\mathrm{~m}, \operatorname{ar}-\mathrm{H}_{4}\right), 5.72(\mathrm{dd}, J=10,1 \mathrm{~Hz}, \mathrm{H}-18), 5.65$ (ddd, $\left.J=10,4,1 \mathrm{~Hz}, \mathrm{H}-19\right), 4.60$ (d, $J=11 \mathrm{~Hz}, \mathrm{H}-17), 3.85(\mathrm{~s}, \mathrm{OMe})$, ca. $3.8\left(\mathrm{~m}, \mathrm{H}_{2}-5\right), 3.45(\mathrm{dbd}, J=12,4.5 \mathrm{~Hz}, \mathrm{H}-3)$, ca. $3.0\left(\mathrm{~m}, \mathrm{H}_{2}-6\right), 2.85$ (dd, $J=13,11 \mathrm{~Hz}, \mathrm{H}-16), 2.87(\mathrm{dm}, J=12 \mathrm{~Hz}, \mathrm{H}-20), 2.64\left(\mathrm{bd}, J=12 \mathrm{~Hz}, \mathrm{H}-21_{e q}\right), 2.34(\mathrm{dm}, J=13 \mathrm{~Hz}, \mathrm{H}-15), 2.24$ (bt,
$J=12 \mathrm{~Hz}, \mathrm{H}-21_{a x}$), ca. $1.85\left(\mathrm{~m}, \mathrm{H}_{2}-14\right)$. Compound 8: $\left(\mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{bs}, \mathrm{NH}), 7.56-7.14\left(\mathrm{~m}, a r-\mathrm{H}_{4}\right), 5.95(\mathrm{dd}$, $J=10.5,5.5 \mathrm{~Hz}, \mathrm{H}-19), 5.65$ (dd, $J=10.5,5 \mathrm{~Hz}, \mathrm{H}-18$), 4.46 (dd, $J=5,4 \mathrm{~Hz}, \mathrm{H}-17$), 3.84 (s, OMe), ca. 3.8 (m, H2-5), 3.42 (bd, $J=12.5 \mathrm{~Hz}, \mathrm{H}-3)$, ca. $3.0\left(\mathrm{~m}, \mathrm{H}_{2}-6\right), 3.10(\mathrm{dd}, J=13,4 \mathrm{~Hz}, \mathrm{H}-16), 2.94$ (dd, $J=11,5 \mathrm{~Hz}, \mathrm{H}-21_{e q}$), ca. 2.65 ($\mathrm{m}, \mathrm{H}-15, \mathrm{H}-20$), ca. $2.22\left(\mathrm{~m}, \mathrm{H}-14_{e q}, \mathrm{H}-21_{a x}\right), 1.93$ (ddd, $J=12.5,11,5 \mathrm{~Hz}, \mathrm{H}-14_{a x}$). Compound 9: $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.65$ (bs, NH), 7.62-7.16 (m, ar-H4), $5.63(\mathrm{dt}, J=4, \sim 2 \mathrm{~Hz}, \mathrm{H}-18), 5.32(\mathrm{dd}, J=11.5,4 \mathrm{~Hz}, \mathrm{H}-17), 3.62(\mathrm{dbd}, J=13,3$ Hz, H-3), 3.52 (dd, $J=14,11.5 \mathrm{~Hz}, \mathrm{H}-16$), 3.51 (s, OMe), 3.08 (ddd, $J=17,10,5.5 \mathrm{~Hz}, \mathrm{H}-6_{a x}$), 2.88 (dd, $J=13,10$ $\left.\mathrm{Hz}, \mathrm{H}-21_{a x}\right), 2.63\left(\mathrm{dbd}, J=17,4 \mathrm{~Hz}, \mathrm{H}-6_{e q}\right), 2.53\left(\mathrm{td}, J=10,5.5 \mathrm{~Hz}, \mathrm{H}-5_{a x}\right), 2.45\left(\mathrm{dd}, J=13,4 \mathrm{~Hz}, \mathrm{H}-21_{e q}\right)$, ca. 2.0 (m, H-15, H-20), ca. 1.4 (m, H2-19).

[^0]: * Corresponding author. Tel: +44 161275 4632; fax: +44 161275 4939; e-mail: r.t.brown@man.ac.uk

